QUESTÃO 72

Analise a tabela que fornece valores de constantes de dissociação (K_a) de dois ácidos e (K_b) de duas bases a 25 °C.

Ácido	K _a	Base	K _b
Clorídrico (HCℓ)	Muito grande	Hidróxido de sódio (NaOH)	Muito grande
Acético (CH ₃ COOH)	1,8 × 10 ⁻⁵	Amônia (NH ₃)	1,8 × 10 ⁻⁵

Considere quatro soluções aquosas 0,1 mol/L dos sais formados pelas reações entre os ácidos e bases citados na tabela:

- NaCℓ
- Na(CH₃COO)
- NH₄(CH₃COO)
- NH₄Cℓ

Dentre essas soluções, duas que apresentam pH aproximadamente igual a 7 são as de números

- (A) 1 e 3.
- (B) 1 e 4.
- (C) 1 e 2.
- (D) 2 e 3.
- (E) 3 e 4.

RESOLUÇÃO

ALTERNATIVA: A

Soluções salinas de pH = 7 são obtidas pela hidrólise de ácidos e bases com graus de ionização próximos, ou seja, com Ka (constantes de ionização próximas: $Ka \cong Kb$).

Assim, temos duas possibilidades:

- 1. NaCl: derivado do HCl e do NaOH e
- 3. NH₄(CH₃COO): derivado do CH₃COOH e do NH₃.